Bremen

ff"iw;

%

Massively Parallel Algorithms
Introduction to CUDA

and Many Fundamental Concepts
of Parallel Programming

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

<ﬁ

N9

Aaa

eeeeee :

U Hybrid/Heterogeneous Computation/Architecture“k-.sgg

= |n the future, we'll compute (number-crunching stuff) on both
CPU and GPU

= GPU = Graphics Processing Unit
GPGPU = General Purpose Graphics Processing Unit

= Terminology:
= Host = CPU and its memory (host memory)

= Device = GPU and its memory (device memory)

DRAM

G. Zachmann Massively Parallel Algorithms SS April 2013 Fundamental Algos & Introduction to CUDA 2

Hello World g g

= Quir first
#include <stdio.h>
CUDA program:

int main(void)

{
printf("Hello World'\n");
return O;

}

= Compilation:

(o]

% nvcc —arch=sm 30 helloworld.cu -o helloworld

= Execution: $./helloworld

(]

= Details (e.qg., setting of search paths) will be explained in the tutorial!

G. Zachmann Massively Parallel Algorithms SS April 2013 Fundamental Algos & Introduction to CUDA 3

eeeee

oo

B

<n

= Now for the real hello world program:

__global

void printFromGPU(void)

{
printf("hello world'\n");

}

int main(void)

{
printf("Hello World'\n");
printFromGPU<<<1,16>>>() ; // kernel launch
cudaDeviceSynchronize () ; // important
return O;

}

= Limitations to GPU-side print£ () apply: see B.16.2 in the CUDA
C Programming Guide !

G. Zachmann Massively Parallel Algorithms SS April 2013 Fundamental Algos & Introduction to CUDA 4

New Terminology, New Syntax

= Kernel :=function/progrm code that is executed on the device

= Syntax for definition by keyword _ global :

__global void kernel(parameters)

{

regular C code

}

- Note: kernels cannot return a value! — void

- Kernels can take arguments (using regular C syntax)
= Syntax for calling kernels:
kernel<<<b, t>>>(params) ;
- Starts bxt many threads in parallel Thread t

= Thread := one "process" (out of many) executing the same kernel

= Think of multiple copies of the same function (kernel)

G. Zachmann Massively Parallel Algorithms SS April 2013 Fundamental Algos & Introduction to CUDA 5

Bremen

Typical Control Flow in Heterogeneous Computing

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out)
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS};
int gindex = threadidx.x + blockldx.x * blockDim.x;
int lindex = threadldx.x + RADIUS;

/I Read input elements into shared memory
temp[index] = in[gindex];
if (threadldx.x < RADIUS) {
temp[index - RADIUS] = in[gindex - RADIUS];
temp[index + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

/I Synchronize (ensure all the data is available) pa ra e n

__syncthreads();

/1 Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

/I Store the result
out{gindex] = result;

}

void fill_ints(int *, int n) {
fil_n(x, n, 1);
}
int main(void) {
int *in, *out; 11 host copies of a, b, ¢
int *d_in, *d_out; II device copies of a, b, ¢
int size = (N + 2*RADIUS) * sizeof(int);
/I Alloc space for host copies and setup values
in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS); .
out = (int *)malloc(size); fil_ints(out, N + 2*RADIUS); Se 'I a l Cod e
Il Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);
/I Copy to device
_in, in, size, fostToDevice);
_out, out, size, ostToDevice);
/f Launch stencil_1d() kernel on GPU

/I Copy result back to host
d_out, size, DeviceToHost);

serial code

cudaFree(d_in); cudaFree(d_out);
return 0;

G. Zachmann Massively Parallel Algorithms SS April 2013 Fundamental Algos & Introduction to CUDA 6

Bremen

Y

= The compilation process:

=3
-dc
. ¥ p

l—_;onterﬁ | Fronterﬁl)

T~ PN

Device code Host codg Device code Host code
| Device Compiler, |Device Compllel
Host Compiler | Fatbinary —)IﬂosiComﬁilﬂl | Host Compiler |

T

PDevice Lin_ker b.o

-

“Host Linke

— -—

| Executable |

G. Zachmann Massively Parallel Algorithms SS April 2013 Fundamental Algos & Introduction to CUDA

L 208

<n

e

0

eeeeee

W Transferring Data between GPU and CPU

= All data transfer between CPU and GPU must be done by copying
ranges of memory (at least for the moment)

= QOur next goal:
fast addition of large vectors

= |dea: one thread per index,
performing one elementary
addition

G. Zachmann Massively Parallel Algorithms SS

A[O] AT | A[2] | A[3] | A[4]
I N N
B[O] ||B[1] | B[2] | B[3] | B[4]
C[O] [|CIM] | C[2] | C[3] | C[4]
April 2013

1l

A[N-1]

B[N-1]

0

C[N-1]

Fundamental Algos & Introduction to CUDA

8

eeeeee

1. We allocate memory on the host as usual:

size t size
float * h a
float * h b= ... and h c

- Looks familiar? | hoped so © ...

vec_len * sizeof(float);
static cast<float>(malloc(size));

2. Fill vectors h_a and h_b (see code on the course web page!)

3. Allocate memory on the device:

float *d a, *d b, *d c;

cudaMalloc((void **) & d a, size);
cudaMalloc((void **) & d b, size);

cudaMalloc((void **) & d c, size);

= Note the naming convention!

G. Zachmann Massively Parallel Algorithms SS April 2013

Fundamental Algos & Introduction to CUDA

9

eeeee

4. Transfer vectors from host to device:

cudaMemcpy(d a, h a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, h b, size, cudaMemcpyHostToDevice);

5. Write the kernel:

= Launch one thread per element in the vector

__global
void addVectors(const float *a, const float *Db,
float *c, unsigned int n)

unsigned int i = threadIdx.x;
if (i < n)
a[i] + b[i];

cl[i]

}

* Yes, this is massively-parallel computation!

G. Zachmann Massively Parallel Algorithms SS "April 2013 Fundamental Algos & Introduction to CUDA

.

<n

10

0

e

6. And call it:

addVectors<<<1l, {1um_threads/>>>(da, db, dc, vec len);

l I

X /This number\defines a block of threads

= All of them run (conceptually) in parallel

= Sometimes denoted with SIMT (think SIMD)

Block b
t0 tl ..

/. Afterwards, transfer the result back to the host:

cudaMemcpy(h ¢, d ¢, size, cudaMemcpyDeviceToHost)

= See the course web page for the full code with error checking

G. Zachmann

Massively Parallel Algorithms SS April 2013

Fundamental Algos & Introduction to CUDA

¥ co
VR =

tB

11

eeeeee

New Concept: Blocks of Threads

Block b

= Block of threads = virtualized multiprocessor t0 t1 . tB

= massively data-parallel task
= Requirements:
= Each block execution must be independent of others
- Can run concurrently or sequentially
= Program is valid for any interleaved execution of blocks
= Gives scalability
= Important: within a block, the execution traces should not
diverge too much, i.e., all of them should take the same

branches, do the same number of loop iterations, as much as
possible!

= If they do diverge, this is called thread divergence — severe
performance penalty!

G. Zachmann Massively Parallel Algorithms SS April 2013 Fundamental Algos & Introduction to CUDA

12

On Memory Management on the GPU

= The API function:

cudaMemcpy (void *dst, wvoid *src,
unsigned int nbytes,
enum cudaMemcpyKind direction)

= Mnemonic: like memcpy () from Unix/Linux

memcpy (void *dst, void *src, unsigned int nbytes)

Blocks CPU until transfer is complete

CPU thread doesn’t start copying until previous CUDA call is complete

cudaMemcpyKind € { cudaMemcpyHostToDevice,

cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice }

G. Zachmann Massively Parallel Algorithms SS April 2013 Fundamental Algos & Introduction to CUDA

¥ co
VR =

13

Terminology

= This memory is called global memory

G. Zachmann Massively Parallel Algorithms SS April 2013

Fundamental Algos & Introduction to CUDA

14

eeeeee

= The APl is extremely simple:

= cudaMalloc (), cudaFree (), cudaMemcpy ()

= Modeled aftermalloc (), free (), memcpy () from Unix/Linux

= Note: there are two different kinds of pointers!

= Host memory pointers (obtained frommalloc())

= Device memory pointers (obtained from cudaMalloc())

= You can pass each kind of pointers around as much as you like ...

G. Zachmann

Massively Parallel Algorithms

SS

April 2013

But: don't dereference device pointers on the host and vice versal!

Fundamental Algos & Introduction to CUDA

¥ co
VR =

15

eeeeee

The General Data Flow in Heterogeneous Computing

1. Copy input data from CPU memory to GPU memory

CPU

CPU Memory

DRAM

G. Zachmann Massively Parallel Algorithms SS "April 2013 Fundamental Algos & Introduction to CUDA

16

eeeee

1. Copy input data from CPU memory to GPU memory

2. Load GPU program(s) and execute, caching data on chip for
performance

CPU Memory

G. Zachmann Massively Parallel Algorithms SS "April 2013 Fundamental Algos & Introduction to CUDA

cG
VR

17

eeeeee

E
7,

1. Copy input data from CPU memory to GPU memory

2. Load GPU program(s) and execute, caching data on chip for
performance

3. Copy results from GPU memory to CPU memory

G. Zachmann Massively Parallel Algorithms SS "April 2013 Fundamental Algos & Introduction to CUDA 18

Blocks and Grids g

= What if we want to handle vectors larger than maxThreadsPerBlock ?

= We launch several blocks of our kernell!

addVectors<<< 1, num threads>>>(d a, d b, d ¢, n);

"

addVectors<<< num blocks, threads per block >>>(d a, d b, d ¢, n);

= This gives the following threads layout:

01112 }[012 O[1|2 }...

-

Block O Block 1 Block 2

G. Zachmann Massively Parallel Algorithms SS April 2013 Fundamental Algos & Introduction to CUDA 20

" How can threads index "their" vector element?

__global
void addVectors(const float *a, const float *b,
float *c, unsigned int n)

unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;
if (1 < n)
c[i] = a[i] + b[i];
}

" The structs blockDim, blockIdx, and threadIdx are
predefined in every thread

blockDim.x
threadIdx.x A
0|12 }[0 112 0|12 } e o o
blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2

G. Zachmann Massively Parallel Algorithms SS April 2013 Fundamental Algos & Introduction to CUDA 21

eeeeee

How Many Threads Should We Launch?

= Number of threads per block should be multiple of 32
= Number of threads must be a multiple of 'number of threads per block'

" The C idiom to do this:

int threads per block = 256; // any k*32 in [1,1024]
int num blocks = (N + threads per block - 1) / threads per block;

= This yields

n N

without any float arithmetic
= Remark: this is the reason forthetest if (1 < n)

= Yes, you should adapt to a programming language's idioms just like
with natural languages, too

G. Zachmann Massively Parallel Algorithms SS April 2013 Fundamental Algos & Introduction to CUDA 22

" There are several limits on num blocks and threads per block:
" num blocks * threads per block < 65,536 !
" num blocks < maxGridSize[0] !

= And a few more ... (we'll get back to this)

G. Zachmann Massively Parallel Algorithms SS April 2013 Fundamental Algos & Introduction to CUDA

23

