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U  Hybrid/Heterogeneous Computation/Architecture“k-.sgg

= |n the future, we'll compute (number-crunching stuff) on both
CPU and GPU

= GPU = Graphics Processing Unit
GPGPU = General Purpose Graphics Processing Unit

= Terminology:
= Host = CPU and its memory (host memory)

= Device = GPU and its memory (device memory)

DRAM
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Hello World g g

= Quir first
#include <stdio.h>
CUDA program:

int main( void )

{
printf( "Hello World'\n");
return O;

}

= Compilation:

(o]

% nvcc —arch=sm 30 helloworld.cu -o helloworld

= Execution: $ ./helloworld

(]

= Details (e.qg., setting of search paths) will be explained in the tutorial!
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= Now for the real hello world program:

__global

void printFromGPU( void )

{
printf( "hello world'\n" );

}

int main( void )

{
printf( "Hello World'\n" );
printFromGPU<<<1,16>>>() ; // kernel launch
cudaDeviceSynchronize () ; // important
return O;

}

= Limitations to GPU-side print£ () apply: see B.16.2 in the CUDA
C Programming Guide !
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New Terminology, New Syntax

= Kernel :=function/progrm code that is executed on the device

= Syntax for definition by keyword _ global :

__global void kernel( parameters )

{

regular C code

}

- Note: kernels cannot return a value! — void

- Kernels can take arguments (using regular C syntax)
= Syntax for calling kernels:
kernel<<<b, t>>>( params ) ;
- Starts bxt many threads in parallel Thread t

= Thread := one "process" (out of many) executing the same kernel

= Think of multiple copies of the same function (kernel)
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Typical Control Flow in Heterogeneous Computing

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out)
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS};
int gindex = threadidx.x + blockldx.x * blockDim.x;
int lindex = threadldx.x + RADIUS;

/I Read input elements into shared memory
temp[index] = in[gindex];
if (threadldx.x < RADIUS) {
temp[index - RADIUS] = in[gindex - RADIUS];
temp[index + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

/I Synchronize (ensure all the data is available) pa ra e n

__syncthreads();

/1 Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

/I Store the result
out{gindex] = result;

}

void fill_ints(int *, int n) {
fil_n(x, n, 1);
}
int main(void) {
int *in, *out; 11 host copies of a, b, ¢
int *d_in, *d_out; II device copies of a, b, ¢
int size = (N + 2*RADIUS) * sizeof(int);
/I Alloc space for host copies and setup values
in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS); .
out = (int *)malloc(size); fil_ints(out, N + 2*RADIUS); Se 'I a l Cod e
Il Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);
/I Copy to device
_in, in, size, fostToDevice);
_out, out, size, ostToDevice);
/f Launch stencil_1d() kernel on GPU

/I Copy result back to host
d_out, size, DeviceToHost);

serial code

cudaFree(d_in); cudaFree(d_out);
return 0;
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= The compilation process:
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W Transferring Data between GPU and CPU

= All data transfer between CPU and GPU must be done by copying
ranges of memory (at least for the moment)

= QOur next goal:
fast addition of large vectors

= |dea: one thread per index,
performing one elementary
addition
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1. We allocate memory on the host as usual:

size t size
float * h a
float * h b= ... and h c

- Looks familiar? | hoped so © ...

vec_len * sizeof(float);
static cast<float>( malloc( size ) );

2. Fill vectors h_a and h_b (see code on the course web page!)

3. Allocate memory on the device:

float *d a, *d b, *d c;

cudaMalloc( (void **) & d a, size );
cudaMalloc( (void **) & d b, size );

cudaMalloc( (void **) & d c, size );

= Note the naming convention!
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4. Transfer vectors from host to device:

cudaMemcpy( d a, h a, size, cudaMemcpyHostToDevice );
cudaMemcpy( d b, h b, size, cudaMemcpyHostToDevice );

5. Write the kernel:

= Launch one thread per element in the vector

__global
void addVectors( const float *a, const float *Db,
float *c, unsigned int n )

unsigned int i = threadIdx.x;
if (i < n)
a[i] + b[i];

cl[i]

}

* Yes, this is massively-parallel computation!
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6. And call it:

addVectors<<<1l, {1um_threads/>>>( da, db, dc, vec len );

l I

X /This number\defines a block of threads

= All of them run (conceptually) in parallel

= Sometimes denoted with SIMT (think SIMD)

Block b
t0 tl ..

/. Afterwards, transfer the result back to the host:

cudaMemcpy( h ¢, d ¢, size, cudaMemcpyDeviceToHost )

= See the course web page for the full code with error checking

G. Zachmann

Massively Parallel Algorithms SS April 2013

Fundamental Algos & Introduction to CUDA

¥ co
VR =

tB

11



eeeeee

New Concept: Blocks of Threads

Block b

= Block of threads = virtualized multiprocessor t0 t1 . tB

= massively data-parallel task
= Requirements:
= Each block execution must be independent of others
- Can run concurrently or sequentially
= Program is valid for any interleaved execution of blocks
= Gives scalability
= Important: within a block, the execution traces should not
diverge too much, i.e., all of them should take the same

branches, do the same number of loop iterations, as much as
possible!

= If they do diverge, this is called thread divergence — severe
performance penalty!
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On Memory Management on the GPU

= The API function:

cudaMemcpy ( void *dst, wvoid *src,
unsigned int nbytes,
enum cudaMemcpyKind direction)

= Mnemonic: like memcpy () from Unix/Linux

memcpy ( void *dst, void *src, unsigned int nbytes )

Blocks CPU until transfer is complete

CPU thread doesn’t start copying until previous CUDA call is complete

cudaMemcpyKind € { cudaMemcpyHostToDevice,

cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice }
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Terminology

= This memory is called global memory
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= The APl is extremely simple:

= cudaMalloc (), cudaFree (), cudaMemcpy ()

= Modeled aftermalloc (), free (), memcpy () from Unix/Linux

= Note: there are two different kinds of pointers!

= Host memory pointers (obtained frommalloc())

= Device memory pointers (obtained from cudaMalloc())

= You can pass each kind of pointers around as much as you like ...

G. Zachmann

Massively Parallel Algorithms

SS

April 2013

But: don't dereference device pointers on the host and vice versal!
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The General Data Flow in Heterogeneous Computing

1. Copy input data from CPU memory to GPU memory

CPU

CPU Memory

DRAM
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1. Copy input data from CPU memory to GPU memory

2. Load GPU program(s) and execute, caching data on chip for
performance

CPU Memory
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1. Copy input data from CPU memory to GPU memory

2. Load GPU program(s) and execute, caching data on chip for
performance

3. Copy results from GPU memory to CPU memory
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Blocks and Grids g

= What if we want to handle vectors larger than maxThreadsPerBlock ?

= We launch several blocks of our kernell!

addVectors<<< 1, num threads>>>( d a, d b, d ¢, n );

"

addVectors<<< num blocks, threads per block >>>( d a, d b, d ¢, n );

= This gives the following threads layout:

01112 }[012 O[1|2 }...

-

Block O Block 1 Block 2

G. Zachmann Massively Parallel Algorithms SS April 2013 Fundamental Algos & Introduction to CUDA 20



" How can threads index "their" vector element?

__global
void addVectors( const float *a, const float *b,
float *c, unsigned int n )

unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;
if (1 < n)
c[i] = a[i] + b[i];
}

" The structs blockDim, blockIdx, and threadIdx are
predefined in every thread

blockDim.x
threadIdx.x A
0|12 }[0 112 0|12 } e o o
blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2
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How Many Threads Should We Launch?

= Number of threads per block should be multiple of 32
= Number of threads must be a multiple of 'number of threads per block'

" The C idiom to do this:

int threads per block = 256; // any k*32 in [1,1024]
int num blocks = (N + threads per block - 1) / threads per block;

= This yields

n N

without any float arithmetic
= Remark: this is the reason forthetest if ( 1 < n )

= Yes, you should adapt to a programming language's idioms just like
with natural languages, too
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" There are several limits on num blocks and threads per block:
" num blocks * threads per block < 65,536 !
" num blocks < maxGridSize[0] !

= And a few more ... (we'll get back to this)
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